13. Jupiter’s Four Galilean Satellites

- The 4 Galilean satellites are easily seen
- Spacecraft reveal unique properties
- Galilean satellites mimic a planetary system
- Io has abundant volcanic sulfur compounds
- Io is internally heated by Jupiter
- Europa is covered with smooth ice
- Ganymede is covered with cratered ice
- Callisto is covered with cratered ice
- Voyager found tiny moons & a dark ring system
- Titan is Saturn’s only large moon

Galilean Satellites: A Family Portrait

Galilean Satellite Comparisons

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Distance from Jupiter (km)</th>
<th>Orbital period (Earth days)</th>
<th>Mass (kg)</th>
<th>Average density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Io</td>
<td>417,000</td>
<td>1.769</td>
<td>8.792 × 10²⁴</td>
<td>1.22 1320 0.03</td>
</tr>
<tr>
<td>Europa</td>
<td>670,000</td>
<td>3.551</td>
<td>1.451 × 10²⁴</td>
<td>4.78 3790 0.06</td>
</tr>
<tr>
<td>Ganymede</td>
<td>1.107,000</td>
<td>2.780</td>
<td>4.893 × 10²⁴</td>
<td>1.94 3530 0.12</td>
</tr>
<tr>
<td>Callisto</td>
<td>1.878,000</td>
<td>16.689</td>
<td>1.723 × 10²⁴</td>
<td>3.02 9910 0.07</td>
</tr>
</tbody>
</table>

Galilean Satellites are Easily Seen

- It takes binoculars or a telescope...
 - All Galilean satellites are bright enough to be seen
 - All Galilean satellites are very close to Jupiter
 - All Galilean satellites are lost in Jupiter's glare
 - Even small binoculars easily separate the moons

- Orbits of the Galileans satellites
 - Some numbers
 - Io 1.769 days
 - Europa 3.551 days ~ 2 times that of Io
 - Ganymede 7.155 days ~ 4 times that of Io
 - Callisto 16.689 days
 - Some implications
 - Io's orbital motion is easily seen in 2 hours
 - The moons are in different locations on successive nights

Galileans Seen Through Binoculars

- The observations
 - Galilean transits
 - Each Galilean satellite crosses in front of Jupiter
 - A satellite’s shadow is often obvious on Jupiter
 - Galilean occultations
 - Each Galilean satellite crosses behind Jupiter
 - Galilean eclipses
 - Each Galilean satellite crosses into Jupiter's shadow

- The deductions
 - The size of each Galilean moon can be determined
10/6/14

Spacecraft Show Unique Properties
- **Pioneer 10 & Pioneer 11** 1973 & 1974
 - Few images & all of relatively low resolution
- **Voyager 1 & Voyager 2** 1979
 - Many more images with much higher resolution
- **Galileo** 1995
 - Orbit Jupiter for nearly 8 years
 - Had numerous close fly-bys of Galilean satellites
- **Cassini** 2000
 - Did limited imaging on the way to Saturn
- **New Horizons** 2007
 - Did extensive imaging on the way to Pluto
 - Life cycle of fresh ammonia clouds
 - Structure inside volcanic eruptions on Jupiter's moon Io
 - Charged particles in Jupiter's long magnetic tail

Galileo's Non-Imaging Mission
- Determine the density of the Galilean satellites
 - Measure gravitational deflection by each satellite
 - Doppler effect on the radio signals transmitted to Earth
 - Measure diameter of each satellite
- Two classes of Galilean satellites
 - High density: Mostly rock & metal
 - Io: 3.529 g·cm⁻³, No known ices
 - Earth's Moon: 3.344 g·cm⁻³, Virtually no ices
 - Europa: 3.018 g·cm⁻³, Small amount of ices
 - Low density: Mostly ices
 - Ganymede: 1.936 g·cm⁻³
 - Callisto: 1.851 g·cm⁻³

Galileans Mimic a Planetary System
- Orbital dynamics
 - All 4 Galilean satellites orbit in the same plane
 - Jupiter's equatorial plane
 - All 4 Galilean satellites are in prograde orbits
 - Same as all planets
- Formation process
 - Solar system condensation temperature
 - Continuing abundant energy production
 - Core fusion of hydrogen into helium
 - Condensation temperature almost to Jupiter
 - Jovian system condensation temperature
 - Initial moderate energy production
 - Kelvin-Helmholtz [gravitational] contraction
 - Condensation temperature almost to Ganymede

Condensation Temperature: Déjà vu

Io Is Covered With Volcanic Sulfur
- The Voyager 1 fly-by
 - Came within 21,000 km of Io's surface
 - Absolutely no impact craters
 - Extremely colorful surface
 - At least 11 very active geysers / volcanoes
- Remarkable insight
 - Peale, Cassen & Reynolds article in Science
 - Io's heat of formation escaped long ago
 - Io should be "dead" but...
 - Io is flexed by both Jupiter & Europa
 - Its orbit is distorted into an ellipse
 - This generates prodigious amounts of heat
 - More than 40 times more heat than escapes from the Earth
 - This generates prodigious amounts of volcanic activity
 - Io is the most volcanically active body in the Solar System
Io: Both Hemispheres from Voyager

- Loki
- Pele
- Ra
- Amirani
- Prometheus

Io Seen by Voyager 1 & Galileo

(a) Voyager 1, March 1979

(b) Galileo, November 1997

Io’s Two Types of Volcanic Activity

- **Geysers**
 - Multiple simultaneous events
 - Matter ejected 70 to 280 km above Io's surface
 - Maximum velocities on Io are ~ 1,000 m·s⁻¹
 - Maximum velocities on Earth are ~ 100 m·s⁻¹
 - Matter ejected is very rich in sulfur & sulfur dioxide
 - Io’s geysers are driven by sulfur dioxide steam
 - Earth’s geysers are driven by water steam
 - Red, orange & yellow are the most common colors

- **Ultramafic lava flows**
 - Occasional isolated events
 - Occasional curtains of lava
 - Matter flows are very poor in sulfur & sulfur dioxide
 - Brown, gray & black are the most common colors

Io: Frequent Volcanic Activity

- Red ring of sulfur ejected from Pélâ Patera
- White sulfur dioxide “snow”
- Fresh deposits ejected from Pélâ Patera partially cover the red ring from Pélâ

1999 Hawaiian-Style Lava Curtain

- Lava flows
- Volcanic calderas
- Curtain of lava

Jupiter’s Magnetosphere Affects Io

- The size of Jupiter’s magnetosphere
 - Io lies well inside Jupiter’s magnetosphere

- The effects of Jupiter’s magnetosphere
 - Powerful electric currents flow inside Io
 - ~ 400,000 volts of electric potential
 - ~ 5,000,000 amperes of electric current
 - A little S & SO₂ enter Jupiter’s magnetosphere
 - The Io torus [donut] is a cloud encircling Jupiter
 - Io generates a weak magnetic field of its own
 - Io clearly has molten material in its interior
The Io Torus As Seen From Earth

Europa Is Covered With Smooth Ice

- Basic characteristics
 - Europa is the smoothest body in the Solar System
 - Some mechanism completely resurfaces Europa
 - Europa does have very few small craters
 - Formed after the period of intense bombardment
 - The dominant feature is a global network of cracks
 - Dominant colors are white, blue & brown
 - Spectroscopy confirms Europa's surface is water ice
 - Some "ice lava" flows are virtually pure water ice
 - Europa's density is relatively high
 - 85% to 90% of Europa's mass must be rocky material
- Basic process
 - Tidal heating by Jupiter, Io & Ganymede
 - Only ~ 25% as much as for Io

The Possibility of Life on Europa

- The evidence
 - Jupiter’s magnetosphere induces currents in Europa
 - These depend entirely on Jupiter’s magnetosphere
 - Europa must have a subsurface conducting liquid
 - Pure water is a poor conductor ⇒ Impurities essential
 - Life on Earth apparently began in saline ocean water
 - Europa’s outer 100 km to 200 km are ice & liquid water
- The implication
 - Organic chemicals are abundant in Solar System
 - Recent analyses of meteorites confirm this conclusion
 - Life may have formed in Europa’s global ocean
 - Life may still exist on Europa ! ! !

Europa: One Hemisphere & Detail

Smooth & Rough Areas on Europa

Ganymede Covered W/Cratered Ice

- Two distinctly different surfaces
 - Dark terrain
 - Rather high density of craters
 - These old craters are dark & none have ray systems
 - Long, deep furrows have partially erased some craters
 - Bright terrain
 - Rather low density of craters
 - These young craters are bright & many have ray systems
 - Long, deep furrows are very prominent in bright terrain
- Prominent feature
 - Galileo Regio
 - Circular dark terrain ~ 1,700 km in diameter
Callisto Is Covered W/Cratered Ice

- Prominent characteristics
 - Callisto is darkest Galilean satellite
 - It is still about twice as reflective as Earth's Moon
 - Callisto is very heavily cratered
 - The most heavily cratered object in the Solar System
 - Total lack of smooth areas on Callisto
 - It became geologically dead very early in its history
- Unusual features
 - Very few craters are less than 1 km in diameter
 - Astronomers cannot explain this fact
 - Callisto has a small induced magnetic field
 - This depends entirely on Jupiter’s magnetosphere
 - Callisto must have a subsurface conducting liquid
 - Valhalla
 - Multi-ringed impact scar ~ 3,000 km in diameter

Interiors of the Galilean Satellites

Voyager Found Moons & Dark Rings

- Lesser moons
 - At least 63 lesser satellites have been discovered
 - 14 of these are in retrograde orbits
 - Amount to only ~ 0.003 percent of total orbiting mass
 - Many or all may be captured asteroids or comets
- Jupiter’s ring system
 - Ring system is very dark & very narrow
 - Average particle size is ~ 1 μm
 - This is about the size of smoke particles
 - Source may be meteorite impacts with inner moons
Saturn’s Titan Has an Atmosphere

- **Titan data**
 - Solar System’s second largest satellite 5,150 km
 - Only satellite with a substantial atmosphere
 - Kuiper detected methane absorption spectrum 1944
 - Overall composition is ~ 90% N₂
 - ~ 1.5 x Earth’s pressure with ~ 10 x Earth’s gas
 - Weaker gravity does not compress gas as much
- **Titan is perpetually cloud covered**
 - Titan’s surface brightness comparable to moonlit Earth
- **Some implications**
 - Hydrocarbon fog obscures visibility
 - Titan’s surface is covered with hydrocarbon “goo”
 - Titan’s surface has liquid hydrocarbon oceans
 * InfraRed EMR penetrates Titan’s clouds to “see” surface

Titan’s North Polar CH₄ Lakes

![Titan’s North Polar CH₄ Lakes](image)

Saturn’s Six Icy-Surfaced Satellites

- **Mimas & Enceladus**
 - Small
- **Tethys & Dione**
 - Medium
- **Rhea & Iapetus**
 - Large

Cassini / Huygens on Earth

![Cassini / Huygens on Earth](image)

Cassini / Huygens at Saturn

![Cassini / Huygens at Saturn](image)
Rotating Titan

Cassini & Huygens Explore Saturn

- The overall mission
 - Launched 15 Oct. 1997 by a Titan IVB/Centaur
 - Largest, heaviest, most complex interplanetary spacecraft
 - Multiple gravity-assist maneuvers
 - Earth ⇒ Venus ⇒ Venus ⇒ Earth ⇒ Jupiter ⇒ Saturn
- The Cassini orbiter
 - Science observations began 1 Jan 2004
 - Saturn Orbit Insertion 30 Jun 2004
 - Nominal end of science observations 1 Jul 2008
 - Extended mission ??? ???
- The Huygens lander
 - Lander separated from orbiter 25 Dec 2004
 - Lander entered Titan’s atmosphere 14 Jan 2005

The Huygens Scientific Instruments
- Aerosol Collector & Pyrolyser (ACP)
 - Collect aerosols for chemical-composition analyses
- Descent Imager/Spectral Radiometer (DISR)
 - Images & spectral measurements over a wide spectral range
 - A lamp in order to acquire spectra of the surface material
- Doppler Wind Experiment (DWE)
 - Uses radio signals to deduce atmospheric wind properties
- Gas Chromatograph & Mass Spectrometer (GCMS)
 - Identify & quantify various atmospheric constituents
 - High-altitude gas analyses
- Huygens Atmosphere Structure Instrument (HASI)
 - Physical & electrical properties of the atmosphere
- Surface Science Package (SSP)
 - Physical properties & composition of the surface

Huygens "Lake" & Shoreline

Huygens 360° Panorama of Titan

Titan Panorama From ~ 5 Miles Up
Important Concepts

- Some important numbers
 - Galileans are about the Moon's size
 - Two distinct classes of Galileans
 - High density Close to Jupiter
 - Low density Far from Jupiter
 - Ganymede is larger than Mercury
 - It has only ~ 45% of Mercury's mass
 - Io / Europa / Ganymede orbits
 - 1 : 2 : 4 proportion

- A miniature planetary system
 - Orbital dynamics
 - Prograde orbits in the same plane
 - Formation process
 - Condensation temperature again

- Io
 - Most volcanic activity in Solar System
 - Two types of volcanic activity
 - S & SO\textsubscript{2} geysers
 - Ultramafic lava flows

- Europa
 - Icy surface ~ 85% rocky interior
 - Liquid ocean beneath water ice crust
 - Possibilities for life even now

- Ganymede
 - Covered with cratered ice
 - Extensive network of ridges & valleys
 - Dark & bright terrain
 - Old & young respectively

- Callisto
 - Most heavily cratered in Solar System
 - Long dead geologically
 - Vahalla
 - Extremely large multi-ringed impact

- Titan
 - Only moon with an atmosphere
 - Terrain sculpted by flowing liquids
 - Methane (CH\textsubscript{4}) & ethane (C\textsubscript{2}H\textsubscript{6})