7. Our Solar System
- Terrestrial & Jovian planets
- Seven large satellites [moons]
- Spectroscopic evidence
- Chemical composition of the planets
- Asteroids & comets

The Terrestrial & Jovian Planets
- Four small terrestrial planets “Like Earth”
 - Relatively close to the Sun
 - Relatively high density (hydrogen-poor)
 - Materials that do form solid surfaces
 - No ring systems
 - Too warm for ices to exist
- Four large Jovian planets “Like Jupiter”
 - Relatively far from the Sun
 - Relatively low density (hydrogen-rich)
 - Materials that do not form solid surfaces
 - Ring systems
 - Primarily H₂O & CO₂ ices

Planetary Sizes to Scale

Planetary Magnetic Fields
- Bar Magnetic Field
- Earth’s Magnetic Field

Planetary Orbits to Scale

The Eight Planetary Orbits
- Highly elliptical, highly inclined orbit
The Seven Largest Satellites

- **Moons in the Solar System**
 - Mercury & Venus have no moons
 - Earth has one moon
 - Mars has two moons
 - Pluto has five moons
 - All Jovian planets have many moons
 - All Solar System moons are terrestrial objects
 - Solid surfaces: Rocks, ices or a mixture of the two

- **Moon sizes**
 - Several dozen planetary moons are quite small
 - Seven planetary moons are quite large
 - Earth: The Moon
 - Jupiter: Io, Europa, Ganymede & Callisto
 - Saturn: Titan
 - Neptune: Triton

Spectroscopic Evidence

- **Basic physical process**
 - Sunlight is reflected by every Solar System object
 - The solar spectrum is very well known
 - Fraunhofer lines: Absorption lines from the Sun’s atmosphere
 - Surface & atmospheric materials absorb some sunlight
 - Many existing absorption lines are enhanced
 - Some new absorption lines are introduced

- **Basic methods**
 - Earth & orbital telescopes operate in many λ’s
 - Visible light: Reflected sunlight
 - Near-infrared “light”: Reflected sunlight
 - Thermal infrared “light”: Emitted by Earth

Spectroscopy of Jupiter’s Moon Europa

- **Photographic evidence**
 - Surface colors & textures resemble Earth’s ice caps

- **Spectroscopic evidence**
 - Near-infrared sunlight is strongly reflected
 - Same spectral curve as sunlight reflected from water ice

Europa’s Spectrum Shows Water Ice

<table>
<thead>
<tr>
<th>Diameter (km)</th>
<th>Mass (M⊕)</th>
<th>Average Density (g/cm³)</th>
<th>Substantial Atmosphere</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3778</td>
<td>3.53 x 10²²</td>
<td>3.7</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1429</td>
<td>8.95 x 10²²</td>
<td>3.0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2188</td>
<td>3.90 x 10²²</td>
<td>2.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1462</td>
<td>8.48 x 10²²</td>
<td>2.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1540</td>
<td>1.00 x 10²³</td>
<td>2.9</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td>1.01 x 10²³</td>
<td>2.9</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1410</td>
<td>1.10 x 10²³</td>
<td>2.9</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>1.20 x 10²³</td>
<td>2.9</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Saturn’s Moon Titan
Spectroscopy of Saturn’s Moon Titan

• Photographic evidence
 – Titan has a dense atmosphere
 – Titan has perpetual cloud cover
 • Winds recently detected in Titan’s atmosphere 2002
 • Huygens spacecraft landed on Titan 2005

• Spectroscopic evidence
 – Visible sunlight is strongly reflected
 • Distinct absorption lines appear
 – Methane(CH₄) is very prominent From Titan’s atmosphere
 – Hydrogen (H) is very prominent From Sun’s atmosphere
 – Oxygen (O₂) is very prominent From Earth’s atmosphere
 • Great care must be taken interpreting the evidence
 – Need to know what causes each set of absorption lines
 – Orbiting telescopes eliminate spectral lines from the Earth
 – Orbiting telescopes cannot eliminate spectral lines from the Sun

Influences on Titan’s Spectrum

Planetary Chemical Composition

• Terrestrial planets
 – Atmospheres
 • Mercury Essentially no atmosphere
 • Venus Overwhelmingly CO₂ with variable H₂SO₄
 • Earth ~ 78% N₂ + ~ 21% O₂ + ~ 1% Ar
 • Mars Overwhelmingly CO₂
 – Surfaces
 • Mercury Remarkably similar to Earth’s Moon

• Jovian planets
 – Atmospheres
 • Jupiter & Saturn
 – Rich in H & He but with abundant NH₃ (ammonia) clouds
 – Uranus & Neptune
 – Rich in H & He but with abundant CH₄ (methane) clouds
 – Surfaces
 • Jovian planets have no solid surfaces

Planetary Atmospheres

• Basic physical processes
 – Outgassing Volcanic activity produces gases
 • ~1% to 10% the mass of erupting magma is gaseous
 – Mostly water (H₂O), carbon dioxide (CO₂) & sulfur dioxide (SO₂)
 – Gravity Strong enough to retain gases
 • A function of the mass & diameter of the celestial object
 – Low -mass molecules are most likely to escape H₂
 – High-mass molecules are least likely to escape N₂, O₂, CO₂
 – Temperature Low enough to retain gases
 • Temperature is a measure of average molecular speed
 • Molecules statistically have a range of speeds
 – Low-speed molecules are least likely to escape N₂, O₂, CO₂
 – High-speed molecules are most likely to escape H₂

• Some effects
 – Mercury is too small & hot to retain an atmosphere
 – Most moons are too small to retain an atmosphere

Mars: A Typical Terrestrial Planet

Jupiter: Prototype Jovian Planet
Asteroids

- No clear asteroid ⇔ planet distinction
 - “Minor planets” is a common term
 - Essentially similar to terrestrial planets & moons
 - Extremely hydrogen-poor & therefore high density
 - Relatively close to the Sun & therefore relatively hot
 - Definitely solid surfaces
- Asteroid locations
 - Asteroid belt: Between Mars & Jupiter
 - Earth-crossing asteroids: Between Mars & Venus
 - Moons of Jovian planets: Captured asteroids?

Comets

- No clear ring particle ⇔ comet distinction
 - “Dirty snowball” model of comets
 - Quite different from all other Solar System objects
 - A mixture of ices & rock & metal
- Comet sources
 - Short-term comets: Source: Kuiper belt
 - Less than 200 years to orbit the Sun
 - Long-term comets: Source: Oort cloud
 - More than 200 years to orbit the Sun

Comet Hale-Bopp (April 1997)

Seven Big Trans-Neptunian Objects

<table>
<thead>
<tr>
<th>Quasar</th>
<th>Kuiper Belt</th>
<th>Oort Cloud</th>
<th>Average distance from the Sun (AU)</th>
<th>Orbital period (years)</th>
<th>Orbital eccentricity</th>
<th>Inclination of orbit to the ecliptic</th>
<th>Approximate diameter (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
</tbody>
</table>

Comet Hyakutake (April 1996)

http://mstecker.com/pages/asthyakutake41996.htm

http://mstecker.com/pages/astr433erosamp.htm

Comet Hale-Bopp (April 1997)

Bluish tail of gas
White tail of dust

Seven Big Trans-Neptunian Objects

<table>
<thead>
<tr>
<th>Quasar</th>
<th>Kuiper Belt</th>
<th>Oort Cloud</th>
<th>Average distance from the Sun (AU)</th>
<th>Orbital period (years)</th>
<th>Orbital eccentricity</th>
<th>Inclination of orbit to the ecliptic</th>
<th>Approximate diameter (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>43.54</td>
<td>39.54</td>
<td>67.4°</td>
<td>18.5</td>
<td>0.23</td>
<td>8.4°</td>
<td>1220</td>
</tr>
</tbody>
</table>
The Unusual Orbit of Eris

- Terrestrial & Jovian planets
- Seven large moons
 - All are terrestrial objects
- Spectroscopic evidence
 - Solar spectrum is very well known
 - Changes are due to what is observed
 - Earth’s own atmosphere
 - Planetary surfaces & atmospheres
 - Water ice on Europa’s surface
 - Methane in Titan’s atmosphere
- Chemical composition of the planets
 - Terrestrial planets
 - Hydrogen-poor & metal-rich
 - Jovian planets
 - Hydrogen-rich & metal-poor
- Planetary atmospheres
 - Outgasing, gravity & temperature
 - Ultimately, gravity is most important

Important Concepts

- Asteroids & comets
 - Minor Solar System bodies